We show the first example of an organic linker (OL) terminated by carboxylic groups that can form a hydrogen-bonded network/polymer (HBN) in solution under controlled conditions in which the photogenerated charges can hop from a monomer OL to the hydrogen-bonded backbone of OLs, as probed by transient absorption (fs-TA). While fs-TA reveals a slow twisting process in the monomer form of the OL, the formation of a hydrogen-bonded network in solution suppresses such process and favors instead a charge transfer (CT) state along the low-lying hydrogen-bonded backbone. Theoretical calculations show that such solvated HBN in a specific polar solvent is stabilized due to the huge change of the dipole moment from monomer compared to the network, leading to a charge delocalization character due to the symmetry breaking. Our findings will open new avenues for implementing solvated hydrogen-bonded molecules in applications such as sensing and photocatalysis.