Extension of the Surface Organometallic Chemistry to Metal-Organic Framework: development of well-defined single site [(≡Zr-O-)W(=O)(CH2tBu)3] olefin metathesis catalyst
byZ. Thiam, E. Abou-Hamad, B. Dereli, L. Liu, A-H. Emwas, R. Ahmad, H. Jiang, A. A. Isah, P. B. Ndiaye, M. Taoufik, M. Eddaoudi & Y. Han, L. Cavallo, J-M. Basset, M. Eddaoudi
Year:2020DOI:10.1021/jacs.0c06925
Extra Information
J. Am. Chem. Soc.
Abstract
We report here the first step by step anchoring of a W(≡CtBu)(CH2tBu)3 complex on a highly crystalline and mesoporous MOF, namely Zr-NU-1000, using Surface organometallic Chemistry (SOMC) concept and methodology. SOMC allowed us to selectively graft the complex on the Zr6 clusters and characterize the obtained single site material by using state of the art experimental methods including extensive solid-state NMR techniques and HAADF-STEM imaging. Further FT-IR spectroscopy revealed the presence of a W=O moiety arising from the in situ reaction of the W≡CtBu functionality with the coordinated water coming from the 8-connected hexanuclear Zr6 clusters. All the steps leading to the final grafted molecular complex have been identified by DFT. The obtained material was tested for gas phase and liquid phase olefin metathesis and exhibited higher catalytic activity than the corresponding catalysts synthesized by different grafting methods. This contribution establishes the importance of applying SOMC to MOF chemistry to get well defined single site catalyst on MOF inorganic secondary building units, in particular the in situ synthesis of W=O alkyl complexes from their W carbyne analogues.