Hydrogen Storage in Microporous Metal-Organic Frameworks

by Rosi N.L., Eckert J., Eddaoudi M., Vodak D.T., Kim J., O'Keeffe M., Yaghi O.M.
Year: 2003 DOI: 10.1126/science.1083440

Extra Information

Science 16 May 2003: Vol. 300 no. 5622 pp. 1127-1129

Abstract

Metal-organic framework-5 (MOF-5) of composition Zn4O(BDC)3 (BDC = 1,4-benzenedicarboxylate) with a cubic three-dimensional extended porous structure adsorbed hydrogen up to 4.5 weight percent (17.2 hydrogen molecules per formula unit) at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. Inelastic neutron scattering spectroscopy of the rotational transitions of the adsorbed hydrogen molecules indicates the presence of two well-defined binding sites (termed I and II), which we associate with hydrogen binding to zinc and the BDC linker, respectively. Preliminary studies on topologically similar isoreticular metal-organic framework-6 and -8 (IRMOF-6 and -8) having cyclobutylbenzene and naphthalene linkers, respectively, gave approximately double and quadruple (2.0 weight percent) the uptake found for MOF-5 at room temperature and 10 bar.
 

Keywords

MOF